Copied to
clipboard

G = C3×D42order 192 = 26·3

Direct product of C3, D4 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×D42, C6.1602+ 1+4, C42(C6×D4), (C4×D4)⋊14C6, C1214(C2×D4), C41D49C6, C246(C2×C6), C223(C6×D4), C22≀C27C6, (D4×C12)⋊43C2, C4⋊D410C6, C4211(C2×C6), (C4×C12)⋊42C22, (C6×D4)⋊64C22, (C22×D4)⋊11C6, (C23×C6)⋊4C22, (C2×C6).365C24, C6.193(C22×D4), (C2×C12).674C23, (C22×C12)⋊50C22, C23.15(C22×C6), C22.39(C23×C6), (C22×C6).264C23, C2.12(C3×2+ 1+4), (D4×C2×C6)⋊23C2, C4⋊C416(C2×C6), C2.17(D4×C2×C6), (C2×C6)⋊13(C2×D4), (C2×D4)⋊12(C2×C6), C22⋊C45(C2×C6), (C3×C41D4)⋊18C2, (C3×C4⋊D4)⋊37C2, (C3×C4⋊C4)⋊72C22, (C22×C4)⋊11(C2×C6), (C3×C22≀C2)⋊15C2, (C2×C4).32(C22×C6), (C3×C22⋊C4)⋊40C22, SmallGroup(192,1434)

Series: Derived Chief Lower central Upper central

C1C22 — C3×D42
C1C2C22C2×C6C22×C6C6×D4C3×C22≀C2 — C3×D42
C1C22 — C3×D42
C1C2×C6 — C3×D42

Generators and relations for C3×D42
 G = < a,b,c,d,e | a3=b4=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 778 in 428 conjugacy classes, 182 normal (14 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C22×C6, C4×D4, C22≀C2, C4⋊D4, C41D4, C22×D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C6×D4, C23×C6, D42, D4×C12, C3×C22≀C2, C3×C4⋊D4, C3×C41D4, D4×C2×C6, C3×D42
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C24, C3×D4, C22×C6, C22×D4, 2+ 1+4, C6×D4, C23×C6, D42, D4×C2×C6, C3×2+ 1+4, C3×D42

Smallest permutation representation of C3×D42
On 48 points
Generators in S48
(1 39 47)(2 40 48)(3 37 45)(4 38 46)(5 35 43)(6 36 44)(7 33 41)(8 34 42)(9 13 26)(10 14 27)(11 15 28)(12 16 25)(17 21 31)(18 22 32)(19 23 29)(20 24 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)(33 36)(34 35)(37 40)(38 39)(41 44)(42 43)(45 48)(46 47)
(1 33 13 18)(2 34 14 19)(3 35 15 20)(4 36 16 17)(5 11 30 45)(6 12 31 46)(7 9 32 47)(8 10 29 48)(21 38 44 25)(22 39 41 26)(23 40 42 27)(24 37 43 28)
(1 3)(2 4)(5 32)(6 29)(7 30)(8 31)(9 11)(10 12)(13 15)(14 16)(17 34)(18 35)(19 36)(20 33)(21 42)(22 43)(23 44)(24 41)(25 27)(26 28)(37 39)(38 40)(45 47)(46 48)

G:=sub<Sym(48)| (1,39,47)(2,40,48)(3,37,45)(4,38,46)(5,35,43)(6,36,44)(7,33,41)(8,34,42)(9,13,26)(10,14,27)(11,15,28)(12,16,25)(17,21,31)(18,22,32)(19,23,29)(20,24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,36)(34,35)(37,40)(38,39)(41,44)(42,43)(45,48)(46,47), (1,33,13,18)(2,34,14,19)(3,35,15,20)(4,36,16,17)(5,11,30,45)(6,12,31,46)(7,9,32,47)(8,10,29,48)(21,38,44,25)(22,39,41,26)(23,40,42,27)(24,37,43,28), (1,3)(2,4)(5,32)(6,29)(7,30)(8,31)(9,11)(10,12)(13,15)(14,16)(17,34)(18,35)(19,36)(20,33)(21,42)(22,43)(23,44)(24,41)(25,27)(26,28)(37,39)(38,40)(45,47)(46,48)>;

G:=Group( (1,39,47)(2,40,48)(3,37,45)(4,38,46)(5,35,43)(6,36,44)(7,33,41)(8,34,42)(9,13,26)(10,14,27)(11,15,28)(12,16,25)(17,21,31)(18,22,32)(19,23,29)(20,24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,36)(34,35)(37,40)(38,39)(41,44)(42,43)(45,48)(46,47), (1,33,13,18)(2,34,14,19)(3,35,15,20)(4,36,16,17)(5,11,30,45)(6,12,31,46)(7,9,32,47)(8,10,29,48)(21,38,44,25)(22,39,41,26)(23,40,42,27)(24,37,43,28), (1,3)(2,4)(5,32)(6,29)(7,30)(8,31)(9,11)(10,12)(13,15)(14,16)(17,34)(18,35)(19,36)(20,33)(21,42)(22,43)(23,44)(24,41)(25,27)(26,28)(37,39)(38,40)(45,47)(46,48) );

G=PermutationGroup([[(1,39,47),(2,40,48),(3,37,45),(4,38,46),(5,35,43),(6,36,44),(7,33,41),(8,34,42),(9,13,26),(10,14,27),(11,15,28),(12,16,25),(17,21,31),(18,22,32),(19,23,29),(20,24,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,16),(14,15),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32),(33,36),(34,35),(37,40),(38,39),(41,44),(42,43),(45,48),(46,47)], [(1,33,13,18),(2,34,14,19),(3,35,15,20),(4,36,16,17),(5,11,30,45),(6,12,31,46),(7,9,32,47),(8,10,29,48),(21,38,44,25),(22,39,41,26),(23,40,42,27),(24,37,43,28)], [(1,3),(2,4),(5,32),(6,29),(7,30),(8,31),(9,11),(10,12),(13,15),(14,16),(17,34),(18,35),(19,36),(20,33),(21,42),(22,43),(23,44),(24,41),(25,27),(26,28),(37,39),(38,40),(45,47),(46,48)]])

75 conjugacy classes

class 1 2A2B2C2D···2K2L2M2N2O3A3B4A4B4C4D4E···4I6A···6F6G···6V6W···6AD12A···12H12I···12R
order12222···222223344444···46···66···66···612···1212···12
size11112···244441122224···41···12···24···42···24···4

75 irreducible representations

dim1111111111112244
type++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4C3×D42+ 1+4C3×2+ 1+4
kernelC3×D42D4×C12C3×C22≀C2C3×C4⋊D4C3×C41D4D4×C2×C6D42C4×D4C22≀C2C4⋊D4C41D4C22×D4C3×D4D4C6C2
# reps12441424882881612

Matrix representation of C3×D42 in GL4(𝔽13) generated by

3000
0300
0010
0001
,
12000
01200
00811
0005
,
1000
0100
00811
00125
,
1200
121200
00120
00012
,
1000
121200
00120
00012
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,8,0,0,0,11,5],[1,0,0,0,0,1,0,0,0,0,8,12,0,0,11,5],[1,12,0,0,2,12,0,0,0,0,12,0,0,0,0,12],[1,12,0,0,0,12,0,0,0,0,12,0,0,0,0,12] >;

C3×D42 in GAP, Magma, Sage, TeX

C_3\times D_4^2
% in TeX

G:=Group("C3xD4^2");
// GroupNames label

G:=SmallGroup(192,1434);
// by ID

G=gap.SmallGroup(192,1434);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,2102,794]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽